Name	Date

Warm-Up: CODOMINANT TRAITS

Complete the table by filling in the missing information.

Genotypes	Human Blood Groups Surface Molecules	Phenotypes
1. I^AI^A or I^Ai	A	
2. I ^B I ^B or I ^B i		В
3.	A and B	AB
4.	none	

Comp	lete	each	statement
COLLID		Cucii	Statement

_	Pland	groups are a classic example of	inharitanaa in humana
э.	Riood	groups are a classic example of	inheritance in humans.

6. The alleles are always	vays both	n expressed.
----------------------------------	-----------	--------------

7. The alleles
$$I^A$$
 and I^B are ______, meaning they are always both expressed.

8.
$$I^A$$
 and I^B are dominant to ______.

- **10.** A child who inherits I^A from his mother and I^B from his father will have type ______blood.
- **11.** A child whose parents both have type O blood will have type ______ blood.
- **12.** If a woman with blood type A has a baby with blood type AB, a man with blood type O ______ be the father.
- **13.** Blood tests ______ be used to prove that a certain man is the father of a child.

