| Name | Date | |------|------| | | | ## Warm-Up: CODOMINANT TRAITS Complete the table by filling in the missing information. | Genotypes | Human Blood Groups
Surface Molecules | Phenotypes | |--|---|------------| | 1. I^AI^A or I^Ai | A | | | 2. I ^B I ^B or I ^B i | | В | | 3. | A and B | AB | | 4. | none | | | Comp | lete | each | statement | |--------|------|-------|-----------| | COLLID | | Cucii | Statement | | _ | Pland | groups are a classic example of | inharitanaa in humana | |----|-------|---------------------------------|------------------------| | э. | Riood | groups are a classic example of | inheritance in humans. | | 6. The alleles are always | vays both | n expressed. | |----------------------------------|-----------|--------------| |----------------------------------|-----------|--------------| **7.** The alleles $$I^A$$ and I^B are ______, meaning they are always both expressed. **8.** $$I^A$$ and I^B are dominant to ______. - **10.** A child who inherits I^A from his mother and I^B from his father will have type ______blood. - **11.** A child whose parents both have type O blood will have type ______ blood. - **12.** If a woman with blood type A has a baby with blood type AB, a man with blood type O ______ be the father. - **13.** Blood tests ______ be used to prove that a certain man is the father of a child.