3.4 Diffusion and Osmosis

VOCABULARY

passive transport diffusion concentration gradient osmosis isotonic hypertonic hypotonic facilitated diffusion

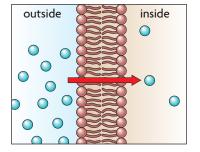


FIGURE 4.1 Passive transport is the movement of molecules across the membrane from areas of higher concentration to areas of lower concentration. It does not require energy input from the cell.

CONNECT TO

HUMAN BIOLOGY

As you will learn in **Respiratory and Circulatory Systems**, diffusion plays a key role in gas exchange in the lungs and other body tissues.

KEY CONCEPT Materials move across membranes because of concentration differences.

MAIN IDEAS

- Diffusion and osmosis are types of passive transport.
- Some molecules diffuse through transport proteins.

Connect to Your World

If you have ever been stuck in traffic behind a truck full of pigs, you know that "unpleasant" fails to fully describe the situation. That is because molecules travel from the pigs to receptors in your nose, and your brain interprets those molecules to be a really bad odor. Or perhaps you have tie-dyed a T-shirt and have seen dye molecules spread throughout the pot of water, turning it neon green or electric blue. Why does that happen? Why don't the molecules stay in one place?

Diffusion and osmosis are types of passive transport.

Cells almost continually import and export substances. If they had to expend energy to move every molecule, cells would require an enormous amount of energy to stay alive. Fortunately, some molecules enter and exit a cell without requiring the cell to work. As **FIGURE 4.1** shows, **passive transport** is the movement of molecules across a cell membrane without energy input from the cell. It may also be described as the diffusion of molecules across a membrane.

Diffusion

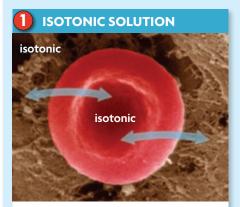
Diffusion is the movement of molecules in a fluid or gas from a region of higher concentration to a region of lower concentration. It results from the natural motion of particles, which causes molecules to collide and scatter. Concentration is the number of molecules of a substance in a given volume, and it can vary from one region to another. A **concentration gradient** is the difference in the concentration of a substance from one location to another. Molecules diffuse down their concentration gradient—that is, from a region of higher concentration to a region of lower concentration.

In the tie-dye example, dye molecules are initially at a high concentration in the area where they are added to the water. Random movements of the dye and water molecules cause them to bump into each other and mix. Thus, the dye molecules move from an area of higher concentration to an area of lower concentration. Eventually, they are evenly spread throughout the solution. This means the molecules have reached a dynamic equilibrium. The concentration of dye molecules is the same throughout the solution (equilibrium), but the molecules continue to move (dynamic).

FIGURE 4.2 Diffusion results from the natural motion of particles.

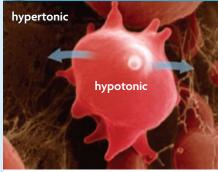
In cells, diffusion plays an important role in moving substances across the membrane. Small lipids and other nonpolar molecules, such as carbon dioxide and oxygen, easily diffuse across the membrane. For example, most of your cells continually consume oxygen, which means that the oxygen concentration is almost always higher outside a cell than it is inside a cell. As a result, oxygen generally diffuses into a cell, without the cell's expending any energy.

Osmosis


Water molecules, of course, also diffuse. They move across a semipermeable membrane from an area of higher water concentration to an area of lower water concentration. This process is called **osmosis.** It is important to recognize that the higher the concentration of dissolved particles in a solution, the lower the concentration of water molecules in the same solution. So if you put 1 teaspoon of salt in a cup of water and 10 teaspoons of salt in a different cup of water, the first cup would have the higher water concentration.

A solution may be described as isotonic, hypertonic, or hypotonic relative to another solution. Note that these terms are comparisons; they require a point of reference, as shown in **FIGURE 4.3**. For example, you may be taller than your coach or taller than you were two years ago, but you are never just taller. Likewise, a solution may be described as isotonic only in comparison with another solution. To describe it as isotonic by itself would be meaningless.

- A solution is **isotonic** to a cell if it has the same concentration of dissolved particles as the cell. Water molecules move into and out of the cell at an equal rate, so the cell's size remains constant.
- 2 A **hypertonic** solution has a higher concentration of dissolved particles than a cell. This means water concentration is higher inside the cell than outside. Thus, water flows out of the cell, causing it to shrivel or even die.


FIGURE 4.3 Effects of Osmosis

Osmosis is the diffusion of water across a semipermeable membrane from an area of higher water concentration to an area of lower water concentration.

A solution is isotonic to a cell if it has the same concentration of solutes as the cell. Equal amounts of water enter and exit the cell, so its size stays constant.

2 HYPERTONIC SOLUTION

A hypertonic solution has more solutes than a cell. Overall, more water exits a cell in hypertonic solution, causing the cell to shrivel or even die.

A hypotonic solution has fewer solutes than a cell. Overall, more water enters a cell in hypotonic solution, causing the cell to expand or even burst.

Apply How would adding salt to the isotonic solution above affect the cell?

©HMH; (bl), (bc), (br) © David M. Phillips/Photo Researchers, Inc

Ē

3 A **hypotonic** solution has a lower concentration of dissolved particles than a cell. This means water molecules are more concentrated outside the cell than inside. Water diffuses into the cell. If too much water enters a cell, the cell membrane could potentially expand until it bursts.

Some animals and single-celled organisms can survive in hypotonic environments. Their cells have adaptations for removing excess water. In plants, the rigid cell wall prevents the membrane from expanding too much. Remember from Section 2 that pressure exerted on the cell wall by fluid inside the central vacuole provides structural support for each cell and for the plant as a whole.

Apply What will happen to a houseplant if you water it with salt water (a hypertonic solution)?

Some molecules diffuse through transport proteins.

Some molecules cannot easily diffuse across a membrane. They may cross more easily through transport proteins—openings formed by proteins that pierce the cell membrane. **Facilitated diffusion** is the diffusion of molecules across a membrane through transport proteins. The word *facilitate* means "to make easier." Transport proteins make it easier for molecules to enter or exit a cell. But the process is still a form of passive transport. The molecules move down a concentration gradient, requiring no energy expenditure by the cell.

There are many types of transport proteins. Most types allow only certain ions or molecules to pass. As **FIGURE 4.4** shows, some transport proteins are simple channels, or tunnels, through which particles such as ions can pass. Others act more like enzymes. When bound, the protein changes shape, allowing the molecule to travel the rest of the way into the cell.

Summarize Explain why transport proteins are needed in the cell membrane.

READING TOOLBOX

VOCABULARY

The words *isotonic, hypertonic,* and *hypotonic* share the root word *tonic,* which means "pressure." Their prefixes give them different comparative meanings. *iso-* = equal, same *hyper-* = over, above *hypo-* = under, below

FIGURE 4.4 Facilitated diffusion enables molecules that cannot directly cross the phospholipid bilayer to diffuse through transport proteins in the membrane.

4 Formative Assessment

REVIEWING 🖸 MAIN IDEAS

- Explain what a concentration gradient is and what it means for a molecule to diffuse down its concentration gradient.
- 2. Explain why **facilitated diffusion** does not require energy from a cell.

CRITICAL THINKING

- 3. Apply A cell is bathed in fluid. However, you notice that water is flowing out of the cell. In what kind of solution is this cell immersed: isotonic, hypotonic, or hypertonic?
- **4. Compare** How are receptors and transport proteins similar?

SELF-CHECK Online HMDScience.com

🔆 CONNECT TO

HEALTH

5. When a person becomes dehydrated due to the loss of fluids and solutes, saline solution (water and salts) is infused into the bloodstream by medical personnel. Why is saline solution used instead of pure water?