NAME______ DATE_____ SCORE_____

Cell Membrane Reading Guide & Coloring Worksheet

Composition of the Cell Membrane & Functions

The cell membrane, or the , forms a boundary between a cell and the outside environment and consists of a double layer of interspersed with a variety of other molecules. A phospholipid is a molecule composed of three basic parts:

The ______ and the ______ groups form the "head" of a phospholipid; the _____ form the "tail". Because the head bears a charge, it is ______ and forms hydrogen bonds with molecules. In contrast, the fatty acid tails are and cannot form hydrogen bonds with water. As a result, the nonpolar tails are attracted to each other and repelled by water. SKETCH and LABEL a phospholipid coloring the heads red and the tails blue.

PHOSPHOLIPID

The properties of polar _____ and nonpolar _____ cause the phospholipids to arrange themselves in layers, like a sandwich. The _____heads are like the bread. They form the surfaces of the membrane, where they interact with the environment both outside and inside a cell. The tails are like the filling. They are sandwiched between the ______ of polar heads, where they are protected from the watery environment.

Other molecules, which are embedded within the phospholipid layers, give the membrane properties and characteristics it would not otherwise have.

- _____ molecules strengthen the cell membrane.
- Some extend through one or both phospholipid layers and help materials the membrane. Other proteins are key components of the Different cell types have different membrane proteins.
- attached to membrane proteins serve as ______ tags, enabling cells to distinguish one type of cell from another.

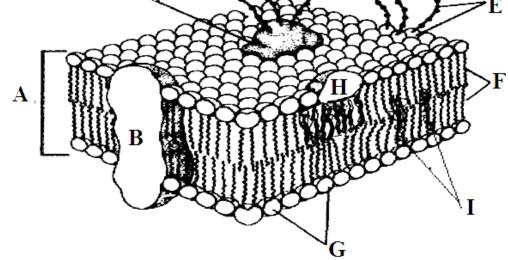
ANALYSIS:

Q1. How are cytoskeleton proteins involve in the membrane?

Q2. What is the function of the protein channels?

Q3. Which part of the membrane is nonpolar?

List 3 functions of the cell or plasma membrane:


- a. ______b.
- C. _____

Fluid Mosaic Model

The ______, which describes the arrangement of the molecules that make up a cell membrane based on two characteristics. First, the cell membrane is ______, not rigid. The ______ in each layer can move from side to side and slide past each other so the membrane behaves like a fluid. However, ______ embedded in the membrane do not flip vertically. Second, the variety of ______ studding the membrane is similar to the arrangement of colorful tiles with different textures and patterns that make up a dynamic ______.

Correctly color code and identify the name for each part of the cell membrane.

Letter	Name/Color	Letter	Name/Color
	Phospholipid bilayer (no color) Integral protein (pink) Fatty acid tails (orange) Phosphate heads (yellow)		Peripheral protein (red) Cholesterol (blue) Glycoprotein (green) Glycolipids (purple)
	C	Max	~ \\ >=E

Match the cell membrane structure or its function with the correct letter from the cell membrane diagram.

Letter	Structure/Function	Letter	Structure/Function
	Attracts water Helps maintain flexibility of membrane		Repels water Make up the bilayer
	Involved in cell-to-cell recognition		Help transport certain materials across the cell membrane

Selective Permeability

The cell membrane has the property of	, which means it allows
some, but not all, materials to cross. Selective permeability enables	a cell to maintain
in spite of unpredictable, changing conditions	the cell.

Q4. Why should the cell control the import and export of certain molecules and ions?

Molecules cross the membrane in seve	ral ways. Some of th	ese methods require the cell to
expend; others do not. I	How a particular mole	ecule crosses the membrane
depends on the,	, and _	inside
versus outside the cell. In general,		molecules easily pass through
the cell membrane, small polar molecul	es are transported vi	a, and large
molecules are moved in		

Redraw the diagrams in Figure 3.2, Figure 3.3 and Figure 3.4 in the boxes below. <u>Color</u> the appropriate structures, and <u>write a description</u> of the process drawn on the lines below each box. Mark the direction of molecular movement with a red arrow.

Outside	Inside	Outside	Inside	Outside	Inside

Figure 3.2

Chemical Signals

A ______ is a protein that detects a signal molecule and performs an action in response. It ______ and _____ to only certain molecules ensuring that the right cell gets the right signal at the right time. The molecule a receptor binds to is called a ______. When a receptor and a ligand bind they change _____.

There are _____ major types of receptors are present in your cells:

- a) _____ receptors are located within a cell and bind to molecules that cross directly through the membrane
- b) _____ receptors are located in the membrane, bind to molecules that cannot cross it, and transmit the signal to the cell interior by changing shape.

Q5. Why is it important for ligands and receptors to change shape when they bind?

Q6. Discuss how <u>aldosterone</u> maintain normal blood pressure by describing

- how the hormone crosses the cell membrane
- what type of receptors are involved
- which body cell and what body processes are affected